Abstract
Feature selection in large, incomplete decision systems is a challenging problem. To avoid exponential computation in exhaustive feature selection methods, many heuristic feature selection algorithms have been presented in rough set theory. However, these algorithms are still time-consuming to compute. It is therefore necessary to investigate effective and efficient heuristic algorithms. In this paper, rough entropy-based uncertainty measures are introduced to evaluate the roughness and accuracy of knowledge. Moreover, some of their properties are derived and the relationships among these measures are established. Furthermore, compared with several representative reducts, the proposed reduction method in incomplete decision systems can provide a mathematical quantitative measure of knowledge uncertainty. Then, a heuristic algorithm with low computational complexity is constructed to improve computational efficiency of feature selection in incomplete decision systems. Experimental results show that the proposed method is indeed efficient, and outperforms other available approaches for feature selection from incomplete and complete data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.