Abstract

Abstract In the present study, Krill Herd (KH) is proposed as a Feature Selection tool to detect spam email problems. This works by assessing the accuracy and performance of classifiers and minimizing the number of features. Krill Herd is a relatively new technique based on the herding behavior of small crustaceans called krill. This technique has been combined with a local search algorithm called Tabu Search (TS) and has been successfully employed to identify spam emails. This method has also generated much better results than other hybrid algorithm optimization systems such as the hybrid Water Cycle Algorithm with Simulated Annealing (WCASA). To assess the effectiveness of KH algorithms, SVM classifiers, and seven benchmark email datasets were used. The findings indicate that KHTS is much more accurate in detecting spam mail (97.8%) than WCASA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.