Abstract
Analysis of medical data for disease prediction requires efficient feature selection techniques, as the data contains a large number of features. Researchers have used evolutionary computation (EC) techniques like genetic algorithms, particle swarm optimization etc. for FS and have found them to be faster than traditional techniques. We have explored a relatively new EC technique called gravitational search algorithm (GSA) for feature selection in medical datasets. This wrapper based method, that we have employed, using GSA and k-nearest neighbors reduces the number of features by an average of 66% and considerably improves the accuracy of prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.