Abstract
Abstract The research is related to machine learning and deep learning (ML/DL) methods for clustering and classification that are compatible with anomaly detection (network attacks detection) in digital forensics. Research is conducted in the field of selecting subsets of features of a dataset useful for constructing a good predictor (classifier). In this study, a new feature selection method for a classifier based on the Analytical Hierarchy Process (AHP) method is presented and tested. The proposed step-by-step algorithm for the iterative selection of these features makes it possible to obtain the minimum required list of features that are associated with attack events and can be used to detect them. For the classification, Artificial Neural Network (ANN) method is used. The accuracy of attack detection by the proposed method has been verified in numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.