Abstract

Genetic Programming (GP) has been successfully used to automatically design dispatching rules in job shop scheduling. The goal of GP is to evolve a priority function that will be used to order the waiting jobs at each decision point, and decide the next job to be processed. To this end, the proper terminals (i.e. job shop features) have to be decided. When evolving the priority function, various job shop features can be included in the terminal set. However, not all the features are helpful, and some features are irrelevant to the rule. Including irrelevant features into the terminal set enlarges the search space, and makes it harder to achieve promising areas. Thus, it is important to identify the important features and remove the irrelevant ones to improve the GP-evolved rules. This paper proposes a domain-knowledge-free feature ranking and selection approach. As a result, the terminal set is significantly reduced and only the most important features are selected. The experimental results show that using only the selected features can lead to significantly better GP-evolved rules on both training and unseen test instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.