Abstract

Diabetes Mellitus (DM) is a disease caused by blood sugar level increased were higher than the maximum limit. Food consumed tends to contain uncontrolled sugar which could cause the drastic increase of blood sugar level. It is necessary to efforts, to increasing the public awareness to controlling blood sugar and the risks of increasing blood sugar level so as to determine of preventive and early detection measures One of used of data mining technique is information technology in the health sector which used a lot as a decision maker to predicting and diagnosing a several disease. This research aims to optimizing the features on classification of the data mining with the C4.5 algorithm using Particle Swarm Optimization (PSO) to detect the blood sugar level in patient. The dataset used is the effect of physical activity to the Blood Sugar Level at H. Abdul Manan Simatupang Kisaran Regional Public Hospital. The amount of dataset used is 42 record with 10 attributes. The result of this research obtained that the Particle Swarm Optimization (PSO) may increasing the accuracy performance of C4.5 from 86% to 95%. Whereas the evaluation result of the AUC Value increasing from 0,917 to 0,950. From those 10 attributes which are then selection with using PSO into 7 attributes used to determine the prediction of sugar level. Therefore the Algorithm C4.5 using the Particle Swarm Optimization (PSO) may provide the best solution to the accuracy of detection blood sugar levels.

Highlights

  • Introduction to Data MiningWilley Interscience.Rusda Wajhillah., 2014

  • The dataset used is the effect of physical activity to the Blood Sugar Level at H

  • The result of this research obtained that the Particle Swarm Optimization (PSO) may increasing the accuracy performance of C4.5 from

Read more

Summary

Metode Penelitian

Pada penelitian lain yang dilakukan oleh Sisodia dengan menggunakan algoritma Naive Bayes menghasilkan tingkat akurasi sebesar 76,03%. Data yang digunakan untuk mengukur tingkat akurasi ini menggunakan data. Pima Indians Diabetes Databases (PIDD) [8]. Penelitian ini menggunakan data record sebanyak 250 record dan menghasilkan tingkat akurasi sebesar 93,60%. Dengan algoritma C4.5, sedangkan C4.5 berbasis PSO menghasilkan akurasi 96.00%. Algoritma C4.5 berbasis Praticle Swarm Optimization (PSO) memiliki tingkat akurasi tertinggi yaitu 96%. Dibandingkan dengan dua algoritma lainnya [9]. Pada metode penelitian ini menjelaskan tentang metode penelitian, dataset yang digunakan, teori algoritma C4.5, algoritma Particle Swarm Optimization (PSO), validasi pengujian menggunakan K-Fold Cross Validation, pengukuran performa menggunakan metode evaluasi confusion matrix

Pengumpulan Data
Dataset
Confusion Matrix
Hasil dan Pembahasan
Perhitungan Manual Algoritma
Evaluasi pada Kurva ROC
Evaluasi pada Model Confusion Matrix
Kesimpulan

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.