Abstract

One of the most important types of signal found in the area of machine condition monitoring/prognostic health monitoring (MCM/PHM) is the vibration signal, a type of waveform. Many time-frequency domain techniques have been proposed to interpret such signals, including wavelet packet decomposition (WPD). Previous work has shown how to extend the WPD algorithm to operate on streaming signals, but the number of output variables becomes exponential in the number of levels of decomposition, hindering data mining in limited-memory environments. Feature selection techniques, well understood in other areas of data mining, can be used to greatly reduce the number of output variables and speed up the machine learning algorithms. This paper presents a case study comparing two versions of WPD both with and without feature selection, demonstrating that removing most of the features produced by the WPD does not impair its performance within the context of MCM/PHM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.