Abstract

This paper presents an improved genetic algorithm based feature selection method for multi-class imbalanced data. This method improves the fitness function through using the evaluation criterion EG-mean instead of the global classification accuracy in order to choose the features which are favorable to recognize the minor classes. The method is evaluated using several benchmark data sets, and the experimental results show that, compared with the traditional feature selection method based on genetic algorithm, the proposed method has certain advantages in the size of feature subsets and improves the precision of the minor classes for multi-class imbalanced data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.