Abstract
Morphological feature extraction (MFE) has been successfully used to increase classification accuracy and reduce the noise level for classification or aerial images. In this paper we explore feature selection and extraction for MFE using random forests (RFs) for classification and feature selection. The approach is compared to MFE from principal components extracted from the data, by principal component analysis (PCA), which has been successful in the past. The experimental results presented in this paper show that by estimating the most important features of our data set using RFs, and selecing a few of the features for MFE yields equal or better accuracies than by using PCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.