Abstract
Particle swarm optimization (PSO) is a global optimization method that is extremely effective. PSO's flaws include slow convergence, premature convergence, and getting stuck at local optima. In this paper, the chaos map and dynamic-weight Particle Swarm Optimization (CPSO) are combined with PSO to improve the search process by adjusting the inertia weight of PSO and changing the position update formula in the Chaos dynamic-weight Particle Swarm Optimization (CPSO), resulting in efficient balancing for local and global PSO feature selection processes. Using eight numerical functions, the performance of CPSO was compared to that of two metaheuristic techniques which are the original PSO and Differential Evolution (DE). The results reveal that the CPSO is an efficient feature selection technique that generates good results by balancing the exploration and exploitation search processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.