Abstract
Feature selection plays a pivotal role in preprocessing data for machine learning (ML) models. It entails choosing a subset of pertinent features to enhance the model’s accuracy and minimize overfitting. Wrapper methods based on metaheuristics are one approach to feature selection, leveraging the predictive accuracy of a learning algorithm to form a condensed set of features. Traditionally, this method uses K-Nearest Neighbor (KNN) for maximizing accuracy as its cost function. However, this approach often yields less than optimal results in large sample spaces and demands considerable computational resources. To circumvent the shortcomings of this approach, this work proposes a novel metaheuristic algorithm, termed the Hybrid Sine Cosine Firehawk Algorithm. Furthermore, a novel feature selection technique is designed that uses this hybrid algorithm to eliminate insignificant and redundant features by incorporating the minimization of dataset variance in the cost function. Additionally, the hybridization of multiple metaheuristic algorithms produces the best features of each algorithm to improve the exploration ability. The proposed technique is tested on 22 University of California Irvine datasets containing low, medium and high dimensional datasets and compared to the traditional KNN-based approach. The technique is also compared with other state-of-the-art metaheuristic techniques, namely Particle Swarm Optimizer, Grey Wolf Optimizer, Whale Optimization Algorithm, Hybrid Ant Colony Optimizer and Improved Binary Bat Algorithm. The results show significant improvements over previous techniques in terms of minimal loss in essential data while reducing the size of the raw data in considerably less time, as well as a well-balanced confusion matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.