Abstract

Identification of the optimal subset of features for Feature Selection (FS) problems is a demanding problem in machine learning and data mining. A trustworthy optimization approach is required to cope with the concerns involved in such a problem. Here, a Binary version of the Capuchin Search Algorithm (CSA), referred to as BCSA, was developed to select the optimal feature combination. Owing to the imbalance of parameters and random nature of BCSA, it may sometimes fall into the trap of an issue called local maxima. To beat this problem, the BCSA could be further improved with the resettlement of its individuals by adopting some methods of repopulating the individuals during foraging. Lévy flight was applied to augment the exploitation and exploration abilities of BCSA, a method referred to as LBCSA. A Chaotic strategy is used to reinforce search behavior for both exploration and exploitation potentials of BCSA, which is referred to as CBCSA. Finally, Lévy flight and chaotic sequence are integrated with BCSA, referred to as LCBCSA, to increase solution diversity and boost the openings of finding the global optimal solutions. The proposed methods were assessed on twenty-six datasets collected from the UCI repository. The results of these methods were compared with those of other FS methods. Overall results show that the proposed methods render more precise solutions in terms of accuracy rates and fitness scores than other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call