Abstract

BackgroundThe prediction of readmission or death after a hospital discharge for heart failure (HF) remains a major challenge. Modern healthcare systems, electronic health records, and machine learning (ML) techniques allow us to mine data to select the most significant variables (allowing for reduction in the number of variables) without compromising the performance of models used for prediction of readmission and death. Moreover, ML methods based on transformation of variables may potentially further improve the performance.ObjectiveTo use ML techniques to determine the most relevant and also transform variables for the prediction of 30-day readmission or death in HF patients.MethodsWe identified all Western Australian patients aged 65 years and above admitted for HF between 2003–2008 in linked administrative data. We evaluated variables associated with HF readmission or death using standard statistical and ML based selection techniques. We also tested the new variables produced by transformation of the original variables. We developed multi-layer perceptron prediction models and compared their predictive performance using metrics such as Area Under the receiver operating characteristic Curve (AUC), sensitivity and specificity.ResultsFollowing hospital discharge, the proportion of 30-day readmissions or death was 23.7% in our cohort of 10,757 HF patients. The prediction model developed by us using a smaller set of variables (n = 8) had comparable performance (AUC 0.62) to the traditional model (n = 47, AUC 0.62). Transformation of the original 47 variables further improved (p<0.001) the performance of the predictive model (AUC 0.66).ConclusionsA small set of variables selected using ML matched the performance of the model that used the full set of 47 variables for predicting 30-day readmission or death in HF patients. Model performance can be further significantly improved by transforming the original variables using ML methods.

Highlights

  • Heart Failure (HF) is a prevalent cardiovascular disorder affecting more than 25 million people worldwide[1]

  • A small set of variables selected using machine learning (ML) matched the performance of the model that used the full set of 47 variables for predicting 30-day readmission or death in heart failure (HF) patients

  • Model performance can be further significantly improved by transforming the original variables using ML methods

Read more

Summary

Introduction

Heart Failure (HF) is a prevalent cardiovascular disorder affecting more than 25 million people worldwide[1]. Since some variables may be redundant, a prediction model developed after selecting only the significant variables associated with the outcome, is expected to reduce the machine-training time and improve the predictive performance[6]. Such a prediction model will allow policy makers and healthcare workers to focus only on the minimum number of variables required to predict the outcome. Electronic health records, and machine learning (ML) techniques allow us to mine data to select the most significant variables (allowing for reduction in the number of variables) without compromising the performance of models used for prediction of readmission and death. ML methods based on transformation of variables may potentially further improve the performance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.