Abstract
该文提出一种新的利用SVM的特征选择算法,并将其融入到极化SAR图像分类过程中,构成一种新的基于SVM的分类方法。其中,特征选择算法利用支持向量个数作为特征评估指标,并以顺序后退法作为搜索策略。真实数据的实验结果表明,该分类方法能有效降低SVM分类器对自身参数的敏感性,与利用原始特征集和经典的RELIEF-F的分类方法相比,该方法能以更少(或相当)的特征个数,在更广泛的SVM参数取值范围内获得更高的分类精度。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electronics & Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.