Abstract
One area of metabolic data analysis is processes that involve the detection and discovery of biomarkers used in the early diagnosis of diseases and development of alternative treatments. Classification and feature selection are frequently used in the statistical analysis of metabolomics data for the detection and discovery of biomarkers. Recently, automatic programming methods have begun to be used instead of conventional methods. In this paper, three conventional classification and feature selection methods (PLS-DA, RF, SVM) and two automatic programming methods (ABCP and GP) are applied to classification problems where they are evaluated on synthetic and real data sets. The selection performances on the biomarker discovery of the algorithms have been compared. It has been found that automatic programming methods are more successful in classifying metabolic data and ABCP is superior to GP in biomarker discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Data Mining and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.