Abstract
The purpose of this study is to develop a hybrid algorithm for feature selection and classification of masses in digital mammograms based on the Crow search algorithm (CSA) and Harris hawks optimization (HHO). The proposed CSAHHO algorithm finds the best features depending on their fitness value, which is determined by an artificial neural network. Using an artificial neural network and support vector machine classifiers, the best features determined by CSAHHO are utilized to classify masses in mammograms as benign or malignant. The performance of the suggested method is assessed using 651 mammograms. Experimental findings show that the proposed CSAHHO tends to be the best as compared to the original CSA and HHO algorithms when evaluated using ANN. It achieves an accuracy of 97.85% with a kappa value of 0.9569 and area under curve AZ = 0.982 ± 0.006. Furthermore, benchmark datasets are used to test the feasibility of the suggested approach and then compared with four state-of-the-art algorithms. The findings indicate that CSAHHO achieves high performance with the least amount of features and support to enhance breast cancer diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.