Abstract

BackgroundComprehensive analyzing multi-omics biological data in different conditions is important for understanding biological mechanism in system level. Multiple or multi-layer network model gives us a new insight into simultaneously analyzing these data, for instance, to identify conserved functional modules in multiple biological networks. However, because of the larger scale and more complicated structure of multiple networks than single network, how to accurate and efficient detect conserved functional biological modules remains a significant challenge.ResultsHere, we propose an efficient method, named ConMod, to discover conserved functional modules in multiple biological networks. We introduce two features to characterize multiple networks, thus all networks are compressed into two feature matrices. The module detection is only performed in the feature matrices by using multi-view non-negative matrix factorization (NMF), which is independent of the number of input networks. Experimental results on both synthetic and real biological networks demonstrate that our method is promising in identifying conserved modules in multiple networks since it improves the accuracy and efficiency comparing with state-of-the-art methods. Furthermore, applying ConMod to co-expression networks of different cancers, we find cancer shared gene modules, the majority of which have significantly functional implications, such as ribosome biogenesis and immune response. In addition, analyzing on brain tissue-specific protein interaction networks, we detect conserved modules related to nervous system development, mRNA processing, etc.ConclusionsConMod facilitates finding conserved modules in any number of networks with a low time and space complexity, thereby serve as a valuable tool for inference shared traits and biological functions of multiple biological system.

Highlights

  • Comprehensive analyzing multi-omics biological data in different conditions is important for understanding biological mechanism in system level

  • Results and discussion we first present simulation studies to demonstrate the performance of ConMod to detect conserved modules in synthetic multiple networks

  • To test whether ConMod is effective for finding conserved modules with meaningful biological functions, we apply ConMod to two sets of real biological networks, a set of 33 cancer type-specific gene co-expression networks and a set of human 15 brain tissue-specific protein interaction networks

Read more

Summary

Results

We propose an efficient method, named ConMod, to discover conserved functional modules in multiple biological networks. The module detection is only performed in the feature matrices by using multi-view non-negative matrix factorization (NMF), which is independent of the number of input networks. Experimental results on both synthetic and real biological networks demonstrate that our method is promising in identifying conserved modules in multiple networks since it improves the accuracy and efficiency comparing with state-of-the-art methods. Applying ConMod to co-expression networks of different cancers, we find cancer shared gene modules, the majority of which have significantly functional implications, such as ribosome biogenesis and immune response. Analyzing on brain tissue-specific protein interaction networks, we detect conserved modules related to nervous system development, mRNA processing, etc

Conclusions
Background
Methods
M wðijtÞ xðijsÞ
M wðijtÞ oij
Results and discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call