Abstract
Inpainting is a technique that can be employed to tamper with the content of images. In this paper, we propose a novel forensics analysis method for diffusion-based image inpainting based on a feature pyramid network (FPN). Our method features an improved u-shaped net to migrate FPN for multi-scale inpainting feature extraction. In addition, a stagewise weighted cross-entropy loss function is designed to take advantage of both the general loss and the weighted loss to improve the prediction rate of inpainted regions of all sizes. The experimental results demonstrate that the proposed method outperforms several state-of-the-art methods, especially when the size of the inpainted region is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.