Abstract
Recent period has witnessed benchmarked performance of transfer learning using deep architectures in computer-aided diagnosis (CAD) of breast cancer. In this perspective, the pre-trained neural network needs to be fine-tuned with relevant data to extract useful features from the dataset. However, in addition to the computational overhead, it suffers the curse of overfitting in case of feature extraction from smaller datasets. Handcrafted feature extraction techniques as well as feature extraction using pre-trained deep networks come into rescue in aforementioned situation and have proved to be much more efficient and lightweight compared to deep architecture-based transfer learning techniques. This research has identified the competence of classifying breast cancer images using feature engineering and representation learning over the established and contemporary notion of using transfer learning techniques. Moreover, it has revealed superior feature learning capacity with feature fusion in contrast to the conventional belief of understanding unknown feature patterns better with representation learning alone. Experiments have been conducted on two different and popular breast cancer image datasets, namely, KIMIA Path960 and BreakHis datasets. A comparison of image-level accuracy is performed on these datasets using the above-mentioned feature extraction techniques. Image level accuracy of 97.81% is achieved for KIMIA Path960 dataset using individual features extracted with handcrafted (color histogram) technique. Fusion of uniform Local Binary Pattern (uLBP) and color histogram features has resulted in 99.17% of highest accuracy for the same dataset. Experimentation with BreakHis dataset has resulted in highest classification accuracy of 88.41% with color histogram features for images with 200X magnification factor. Finally, the results are contrasted to that of state-of-the-art and superior performances are observed on many occasions with the proposed fusion-based techniques. In case of BreakHis dataset, the highest accuracies 87.60% (with least standard deviation) and 85.77% are recorded for 200X and 400X magnification factors, respectively, and the results for the aforesaid magnification factors of images have exceeded the state-of-the-art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary Sciences: Computational Life Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.