Abstract
Zero-shot sketch-based image retrieval (ZS-SBIR) is an important computer vision problem. The image category in the test phase is a new category that was not visible in the training stage. Because sketches are extremely abstract, the commonly used backbone networks (such as VGG-16 and ResNet-50) cannot handle both sketches and photos. Semantic similarities between the same features in photos and sketches are difficult to reflect in deep models without textual assistance. To solve this problem, we propose a novel and effective feature embedding model called Attention Map Feature Fusion (AMFF). The AMFF model combines the excellent feature extraction capability of the ResNet-50 network with the excellent representation ability of the attention network. By processing the residuals of the ResNet-50 network, the attention map is finally obtained without introducing external semantic knowledge. Most previous approaches treat the ZS-SBIR problem as a classification problem, which ignores the huge domain gap between sketches and photos. This paper proposes an effective method to optimize the entire network, called domain-aware triplets (DAT). Domain feature discrimination and semantic feature embedding can be learned through DAT. In this paper, we also use the classification loss function to stabilize the training process to avoid getting trapped in a local optimum. Compared with the state-of-the-art methods, our method shows a superior performance. For example, on the Tu-berlin dataset, we achieved 61.2 + 1.2% Prec200. On the Sketchy_c100 dataset, we achieved 62.3 + 3.3% mAPall and 75.5 + 1.5% Prec100.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.