Abstract
Feature extraction is a crucial and difficult issue in pattern recognition tasks with the high-dimensional and multiple features. To extract the latent structure of multiple features without label information, multi-view learning algorithms have been developed. In this paper, motivated by manifold learning and multi-view Non-negative Matrix Factorization (NM-F), we introduce a novel feature extraction method via multi-view NMF with local graph regularization, where the inner-view relatedness between data is taken into consideration. We propose the matrix factorization objective function by constructing a nearest neighbor graph to integrate local geometrical information of each view and apply two iterative updating rules to effectively solve the optimization problem. In the experiment, we use the extracted feature to cluster several realistic datasets. The experimental results demonstrate the effectiveness of our proposed feature extraction approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.