Abstract
Human actions in video have the variation in both spatial and time domains which cause the difficulty for action classification. According to the nature of articulated body, an amount of movement from point-to-point is not constant, which can be illustrated as a bell-shape. In this paper, key frames are detected for specifying a starting and ending point for an action cycle. The time between key frames determines the window length for feature extraction in time domain. Since the cycles are varying, the key frame interval is varying and adaptive to performer and action. A local orientation histogram of Key Pose Energy Image (KPEI) and Motion History Image (MHI) is constructed during the period. The experimental results on WEIZMANN dataset demonstrate that the feature within the adaptive key frame interval can effectively classify actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.