Abstract

Electroencephalogram (EEG)-based emotion recognition is a rapidly growing field. This paper presents a research study on identifying the changes caused by human emotions in brain signals through EEG records and further examines the availability of chaotic analysis for emotion prediction applications. We designed an efficient presentation including 30 pictures from International Affective Picture System (IAPS) which could stimulate the emotions of happiness, sadness and fear. A group of 20 persons consisting of 12 males and 8 females took place in our research study as subjects voluntarily. In order to acquire the EEG signals under picture induction environment, a total of 30 pictures that might reveal the feelings of happiness, sadness and fear were shown to the volunteer subjects that participated in the study voluntarily. Data acquired from EEG records were analyzed by using chaotic analysis through MATLAB program and two different attributes consisting of Largest Lyapunov Exponent (LLE) and Correlation Dimension were obtained. The mean values of each attribute that obtained through chaotic analysis were compared by using independent t-test and dependent t-test in SPSS program with 95% confidence interval and a P value of p<0.05. The independent samples t-test was used to compare the mean values of each attribute relevant to two unrelated groups (Females-Males) and Dependent samples t-test was used to test whether the mean values of two related observations (two observations for per subject) significantly differs from the hypothesized value. Our study shows that chaotic analysis promises hope for future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.