Abstract
In computer vision, the extraction of robust features from images to construct models that automate image recognition and classification tasks is a prominent field of research. Handcrafted feature extraction and representation techniques become critical when dealing with limited hardware resource settings, low-quality images, and larger datasets. We propose two state-of-the-art handcrafted feature extraction techniques, Oriented FAST and Rotated BRIEF (ORB) and Accelerated KAZE (AKAZE), in combination with Bag of Visual Word (BOVW), to classify standard echocardiogram views using Machine learning (ML) algorithms. These novel approaches, ORB and AKAZE, which are rotation, scale, illumination, and noise invariant methods, outperform traditional methods. The despeckling algorithm Speckle Reduction Anisotropic Diffusion (SRAD), which is based on the Partial Differential Equation (PDE), was applied to echocardiogram images before feature extraction. Support Vector Machine (SVM), decision tree, and random forest algorithms correctly classified the feature vectors obtained from the ORB with accuracy rates of 96.5%, 76%, and 97.7%, respectively. Additionally, AKAZE's SVM, decision tree, and random forest algorithms outperformed state-of-the-art techniques with accuracy rates of 97.7%, 90%, and 99%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of electrical and computer engineering systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.