Abstract

Human motion data is high-dimensional time-series data, and it usually contains measurement error and noise. Recognizing human motion on the basis of such high-dimensional measurement row data is often difficult and cannot be expected for high generalization performance. To increase generalization performance in a human motion pattern recognition task, we employ a deep sparse auto encoder to extract low-dimensional features, which can efficiently represent the characteristics of each motion, from the high-dimensional human motion data. After extracting low-dimensional features by using the deep sparse auto encoder, we employ random forests to classify low-dimensional features representing human motion. In experiments, we compared using the row data and three types of feature extraction methods - principal component analysis, a shallow sparse auto encoder, and a deep sparse auto encoder - for pattern recognition. The experimental results show that the deep sparse auto encoder outperformed the other methods with the highest average recognition accuracy, 75.1%, and the lowest standard deviation, ±3.30%. The proposed method, application of a deep sparse auto encoder, thus enabled higher recognition accuracy, better generalization and more stability than could be achieved with the other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call