Abstract
This paper proposes a method that uses feature fusion to represent images better for face detection after feature extraction by deep convolutional neural network (DCNN). First, with Clarifai net and VGG Net-D (16 layers), we learn features from data, respectively; then we fuse features extracted from the two nets. To obtain more compact feature representation and mitigate computation complexity, we reduce the dimension of the fused features by PCA. Finally, we conduct face classification by SVM classifier for binary classification. In particular, we exploit offset max-pooling to extract features with sliding window densely, which leads to better matches of faces and detection windows; thus the detection result is more accurate. Experimental results show that our method can detect faces with severe occlusion and large variations in pose and scale. In particular, our method achieves 89.24% recall rate on FDDB and 97.19% average precision on AFW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.