Abstract

Abstract: Feature extraction helps to maximize the useful information within a feature vector, by reducing the dimensionality and making the classification effective and simple. In this paper, a novel feature extraction method is proposed: genetic programming (GP) is used to discover features, while the Fisher criterion is employed to assign fitness values. This produces non‐linear features for both two‐class and multiclass recognition, reflecting the discriminating information between classes. Compared with other GP‐based methods which need to generate c discriminant functions for solving c‐class (c>2) pattern recognition problems, only one single feature, obtained by a single GP run, appears to be highly satisfactory in this approach. The proposed method is experimentally compared with some non‐linear feature extraction methods, such as kernel generalized discriminant analysis and kernel principal component analysis. Results demonstrate the capability of the proposed approach to transform information from the high‐dimensional feature space into a single‐dimensional space by automatically discovering the relationships between data, producing improved performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.