Abstract
Evaluating scientists based on their scientific production is a controversial topic. Nevertheless, bibliometrics and algorithmic approaches can assist traditional peer review in numerous tasks, such as attributing research grants, deciding scientific committees, or choosing faculty promotions. Traditional bibliometrics rank individual entities (e.g., researchers, journals, faculties) without looking at the whole data (i.e., the whole network). Network algorithms, such as PageRank, have been used to measure node importance in a network, and have been applied to author ranking. However, traditional PageRank only uses network topology and ignores relevant features of scientific collaborations. Multiple extensions of PageRank have been proposed, more suited for author ranking. These methods enrich the network with information about the author’s productivity or the venue and year of the publication/citation. Most state-of-the-art (STOA) feature-enriched methods either ignore or do not combine effectively this information. Furthermore, STOA algorithms typically disregard that the full network is not known for most real-world cases.Here we describe OTARIOS, an author ranking method recently developed by us, which combines multiple publication/citation criteria (i.e., features) to evaluate authors. OTARIOS divides the original network into two subnetworks, insiders and outsiders, which is an adequate representation of citation networks with missing information. We evaluate OTARIOS on a set of five real networks, each with publications in distinct areas of Computer Science, and compare it against STOA methods. When matching OTARIOS’ produced ranking with a ground-truth ranking (comprised of best paper award nominations), we observe that OTARIOS is >30% more accurate than traditional PageRank (i.e., topology based method) and >20% more accurate than STOA (i.e., competing feature enriched methods). We obtain the best results when OTARIOS considers (i) the author’s publication volume and publication recency, (ii) how recently the author’s work is being cited by outsiders, and (iii) how recently the author’s work is being cited by insiders and how individual he is. Our results showcase (a) the importance of efficiently combining relevant features and (b) how to adequately perform author ranking in incomplete networks.
Highlights
The scientific impact of a researcher measures how much a person has contributed to a scientific field
We recently proposed a new feature enriched author ranking algorithm for incomplete networks named OpTmizing author ranking with insiders/outsiders subnetworks (OTARIOS) (OpTimizing Author Ranking with Insiders/Outsiders Subnetworks) (Silva et al 2018), and showed that OTARIOS outperformed traditional PageRank and simple bibliometrics
Inside parentheses we show the gain of OTARIOS versus SCEAS, i.e., GNDGC and GMRR, respectively and individuality to measure the score term
Summary
The scientific impact of a researcher measures how much a person has contributed to a scientific field. Due to the nature of scientific development, more impactful researchers tend to have access to more funding which supports the creation of more quality work. For (2019) 4:74 more important decisions such as allocating scientific committees, attributing research grants, or choosing faculty promotions, the process is mostly done via peer review. Bibliometrics (i.e., measures to determine scientific impact without human intervention) have been proposed to assist the peer review process (Vieira et al 2014). The h-index (Hirsch 2005) is one of the most widely used bibliometrics; it measures the impact of an author as the number of citations of his most cited papers (e.g., an author has h-index = 3 if he has 3 papers with at least 3 citations)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.