Abstract

We present an evaluation of the impact of a recently proposed synthetic aperture radar (SAR) imaging technique on feature enhancement and automatic target recognition (ATR) performance. This image formation technique is based on nonquadratic optimization, and the images it produces appear to exhibit enhanced features. We quantify such feature enhancement through a number of criteria. The findings of our analysis indicate that the new feature-enhanced SAR image formation method provides images with higher resolution of scatterers, and better separability of different regions as compared with conventional SAR images. We also provide an ATR-based evaluation. We run recognition experiments using conventional and feature-enhanced SAR images of military targets, with three different classifiers. The first classifier is template based. The second classifier makes a decision through a likelihood test, based on Gaussian models for reflectivities. The third classifier is based on extracted locations of the dominant target scatterers. The experimental results demonstrate that the new feature-enhanced SAR imaging method can improve the recognition performance, especially in scenarios involving reduced data quality or quantity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.