Abstract
Every year billions of Euros are lost worldwide due to credit card fraud. Thus, forcing financial institutions to continuously improve their fraud detection systems. In recent years, several studies have proposed the use of machine learning and data mining techniques to address this problem. However, most studies used some sort of misclassification measure to evaluate the different solutions, and do not take into account the actual financial costs associated with the fraud detection process. Moreover, when constructing a credit card fraud detection model, it is very important how to extract the right features from the transactional data. This is usually done by aggregating the transactions in order to observe the spending behavioral patterns of the customers. In this paper we expand the transaction aggregation strategy, and propose to create a new set of features based on analyzing the periodic behavior of the time of a transaction using the von Mises distribution. Then, using a real credit card fraud dataset provided by a large European card processing company, we compare state-of-the-art credit card fraud detection models, and evaluate how the different sets of features have an impact on the results. By including the proposed periodic features into the methods, the results show an average increase in savings of 13%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.