Abstract

The goal of visual surface inspection is to analyze an object’s surface and detect defects by looking at it from different angles. Developments over the past years have made it possible to partially automate this process. Inspection systems use robots to move cameras and obtain pictures that are evaluated by image processing algorithms. Setting up these systems or adapting them to new models is primarily done manually. A key challenge is to define camera viewpoints from which the images are taken. The number of viewpoints should be as low as possible while still guaranteeing an inspection of the desired quality. System engineers define and evaluate configurations that are improved based on a time-consuming trial-and-error process leading to a sufficient, but not necessarily optimal, configuration. With the availability of 3D surface models defined by triangular meshes, this step can be done virtually. This paper presents a new scalable approach to determine a small number of well-placed camera viewpoints for optical surface inspection planning. The initial model is approximated by B-spline surfaces. A set of geometric feature functionals is defined and used for an adaptive, non-uniform surface sampling that is sparse in geometrically low-complexity areas and dense in regions of higher complexity. The presented approach is applicable to solid objects with a given 3D surface model. It makes camera viewpoint generation independent of the resolution of the triangle mesh, and it improves previous results considering number of viewpoints and their relevance.

Highlights

  • With the abundance of various sensing methods, almost every produced object undergoes a quality assurance pro-cess

  • We focus on the object space exploration, i.e., the generation of viewpoint candidates

  • The presented method is applied to models of varying complexity to demonstrate the viability of the approach as well as to highlight the differences between the feature functionals introduced in Sect

Read more

Summary

Introduction

Because of their availability and application versatility, optical sensors are commonly utilized, both as a support and a primary sensing device. When it comes to surface quality inspection, they are especially useful as there are many advanced machine vision tools available (e.g., [3,10,15]). They enable the possibility of inspecting both optical and spatial properties of the object. An in-depth analysis of the topic and various ways to automate machine vision tasks have already been covered by the literature [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.