Abstract
In multi-label classification, multiple label variables in output space are equally important and can be predicted according to a common set of input variables. To improve the accuracy and efficiency of multi-label learner, measuring and utilizing label correlation is the core breakthrough. Extensive research on label correlation focuses on the co-occurrence or mutual exclusion frequency of label values in output space. In this paper, to handle the multi-label learning tasks, a novel method, named FL-MLC, is proposed by considering the influence of feature-label dependencies on inter-label correlations. In order to describe the intrinsic relationship between feature variable and label variable, the discriminant weight of any feature to label is first defined. Therefore, the concept of feature distribution for inputs on label is proposed to reflect the discriminant weights of features to the label. The corresponding calculation process is also designed based on multiple kernel learning and kernel alignment. Furthermore, the feature distributions on different labels are integrated into the feature distribution-based label correlation by using two different aggregation strategies. Obviously, arbitrary label variables with highly similar feature distributions have strong relevance. Thus, the feature distribution-based label correlation is applied to adjust the distance between the parameters for different labels in the predictive learner of FL-MLC method. Finally, the experimental results on twelve real-world datasets demonstrate that our methods achieves good effectiveness and versatility for multi-label classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.