Abstract

Infrared imaging has recently played an important role in a wide range of applications including video surveillance, robotics and night vision. However, the manufacturing cost of high-resolution infrared cameras is more expensive regarding similar quality in visible cameras. This could explain the fact that thermal databases are less available compared to visible ones. In this paper, we mainly emphasis the need for aligning features from visible and thermal domains for object detection in order to ensure effective results in both domains without the need to retrain data and to perform additional annotations. To address that, we incorporate feature distribution alignments into faster R-CNN architecture at different levels. The resulting proposed adaptive detector has the advantage of covering different aspects of the domain shift in order to improve the overall performance. Using KAIST and FLIR ADAS datasets, the effectiveness of the proposed detector is assessed and better results are obtained compared to the baseline detector and to the obtained results by other existing works. Our code is available at https://github.com/AmineMarnissi/UDAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.