Abstract

In this paper, we present a novel and efficient scheme for detection of P300 component of the event-related potential in the Brain Computer Interface (BCI) speller paradigm that needs significantly less EEG channels and uses a minimal subset of effective features. Removing unnecessary channels and reducing the feature dimension resulted in lower cost and shorter time and thus improved the BCI implementation. The idea was to employ a proper method to optimize the number of channels and feature vectors while keeping high accuracy in classification performance. Optimal channel selection was based on both discriminative criteria and forward-backward investigation. Besides, we obtained a minimal subset of effective features by choosing the discriminant coefficients of wavelet decomposition. Our algorithm was tested on dataset II of the BCI competition 2005. We achieved 92% accuracy using a simple LDA classifier, as compared with the second best result in BCI 2005 with an accuracy of 90.5% using SVM for classification which required more computation, and against the highest accuracy of 96.5% in BCI 2005 that used SVM and much more channels requiring excessive calculations. We also applied our proposed scheme on Hoffmann’s dataset to evaluate the effectiveness of channel reduction and achieved acceptable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.