Abstract

Modern distributed manufacturing within Industry 4.0, supported by Cyber Physical Systems (CPSs), offers many promising capabilities regarding effective and flexible manufacturing, but there remain many challenges which may hinder its exploitation fully. One major issue is how to automatically control manufacturing equipment, e.g. industrial robots and CNC-machines, in an adaptive and effective manner. For collaborative sharing and use of distributed and networked manufacturing resources, a coherent, standardised approach for systemised planning and control at different manufacturing system levels and locations is a paramount prerequisite.In this paper, the concept of feature-based manufacturing for adaptive equipment control and resource-task matching in distributed and collaborative CPS manufacturing environments is presented. The concept has a product perspective and builds on the combination of product manufacturing features and event-driven Function Blocks (FB) of the IEC 61499 standard. Distributed control is realised through the use of networked and smart FB decision modules, enabling the performance of collaborative run-time manufacturing activities according to actual manufacturing conditions. A feature-based information framework supporting the matching of manufacturing resources and tasks, as well as the feature-FB control concept, and a demonstration with a cyber-physical robot application, are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call