Abstract
Smishing is a security attack that is performed by sending a fake message intending to steal personal credentials of mobile users. Nowadays, smishing attack becomes popular due to the massive growth of mobile users. The smishing message is very harmful since its target to financial benefits. In this article, the authors present a new feature-based approach to detect smishing messages in the mobile environment. This approach offers ten novel features that distinguish the fake messages from the ham messages. In this article, the authors have also identified the nineteen most suspicious keywords, which are used by the attacker to lure victims. This article has implemented these features on benchmarked dataset and applied numerous classification algorithms to judge the performance of the proposed approach. Experimental outcomes indicate that proposed approach can detect smishing messages with the 94.20% true positive rate and 98.74% overall accuracy. Furthermore, the proposed approach is very efficient for the detection of the zero hour attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.