Abstract

Among various lung image modalities, CT (computed tomography) images have been found most suitable and widely used for detection of small lung nodules. Although an expert radiologist can analyse these images quite perfectly, however an efficient CADe (computer-aided detection ) system capable of detecting pulmonary nodules automatically may be of great help considering the large number of CT images, a radiologist needs to analyse a day in recent years. A few CADe systems have already been tested within lung cancer screening trial which have enjoyed mixed results. So, the field has enough voids to be filled and research towards development of novel and efficient CADe systems has become an interesting, but challenging field of research. We too have been trying to develop CADe systems that can analyse CT images to detect and identify various lung nodules. In the process, we are reporting herein one of our development for the same. Our CADe system has maintained its 81.25% accuracy in detecting malignant nodules. Hand-crafted features of the selected lung CT images were used in the study. The study is emphasised on developing efficient CADe systems capable of detecting solid nodules (size > 2 mm) at different locations, whether isolated, juxtapleural or juxtavascular nodules. While MATLAB was used to carry out pre-processing, segmentation and nodule detection, testing of datasets was done by a MLP (multilayer perceptron) network by using WEKA (Waikato Environment for Knowledge Analysis) software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.