Abstract

Image-based rail defect detection could be conceptually defined as an object detection task in computer vision. However, unlike academic object detection tasks, this practical industrial application suffers from two unique challenges, including object ambiguity and insufficient annotations. To overcome these challenges, we introduce the pixel-wise attention mechanism to fully exploit features of annotated defects, and develop a feature augmentation framework to tackle the defect detection problem. The pixel-wise attention is conducted through a learnable pixel-level similarity between input and support features to obtain augmented features. These augmented features contain co-existing information from input images and multi-class support defects. The final output features are augmented and refined by support features, thus endowing the model to distinguish between ambiguous defect patterns based on insufficient annotated samples. Experiments on the rail defect dataset demonstrate that feature augmentation can help balance the sensitivity and robustness of the model. On our collected dataset with eight defected classes, our algorithm achieves 11.32% higher mAP@.5 compared with original YOLOv5 and 4.27% higher mAP@.5 compared with Faster R-CNN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call