Abstract
It is well known that the variability in speech production due to task-induced stress contributes significantly to loss in speech processing algorithm performance. If an algorithm could be formulated that detects the presence of stress in speech, then such knowledge could be used to monitor speaker state, improve the naturalness of speech coding algorithms, or increase the robustness of speech recognizers. The goal in this study is to consider several speech features as potential stress-sensitive relayers using a previously established stressed speech database (SUSAS). The following speech parameters are considered: mel, delta-mel, delta-delta-mel, auto-correlation-mel, and cross-correlation-mel cepstral parameters. Next, an algorithm for speaker-dependent stress classification is formulated for the 11 stress conditions: angry, clear, cond50, cond70, fast, Lombard, loud, normal, question, slow, and soft. It is suggested that additional feature variations beyond neutral conditions reflect the perturbation of vocal tract articulator movement under stressed conditions. Given a robust set of features, a neural network-based classifier is formulated based on an extended delta-bar-delta learning rule. The performance is considered for the following three test scenarios: monopartition (nontargeted) and tripartition (both nontargeted and targeted) input feature vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.