Abstract

Spectral information represents short-term speech information within a frame of a few tens of milliseconds, while temporal information captures the evolution of speech statistics over consecutive frames. Motivated by the findings that human speech comprehension relies on the integrity of both the spectral content and temporal envelope of speech signal, we study a spectro-temporal transform framework that adapts run-time speech features to minimize the mismatch between run-time and training data, and its implementation that includes cross transform and cascaded transform. A Kullback-Leibler divergence based cost function is proposed to estimate the transform parameters. We conducted experiments on the REVERB Challenge 2014 task, where clean and multi-condition trained acoustic models are tested with real reverberant and noisy speech. We found that temporal information is important for reverberant speech recognition and the simultaneous use of spectral and temporal information for feature adaptation is effective. We also investigate the combination of the cross transform with fMLLR, the combination of batch, utterance and speaker mode adaptation, and multicondition adaptive training using proposed transforms. All experiments consistently report significant word error rate reductions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.