Abstract

Temperate bat species use extended torpor to conserve energy when ambient temperatures are low and food resources are scarce. Previous research suggests that migratory bat species and species known to roost in thermally unstable locations, such as those that roost in trees, are more likely to remain active during winter. However, hibernating colonies of cave roosting bats in the southeastern United States may also be active and emerge from caves throughout the hibernation period. We report what bats are eating during these bouts of winter activity. We captured 2,044 bats of 10 species that emerged from six hibernacula over the course of 5 winters (October–April 2012/2013, 2013/2014, 2015/2016, 2016/2017, and 2017/2018). Using Next Generation sequencing of DNA from 284 fecal samples, we determined bats consumed at least 14 Orders of insect prey while active. Dietary composition did not vary among bat species; however, we did record variation in the dominant prey items represented in species’ diets. We recorded Lepidoptera in the diet of 72.2% of individual Corynorhinus rafinesquii and 67.4% of individual Lasiurus borealis. Diptera were recorded in 32.4% of Myotis leibii, 37.4% of M. lucifugus, 35.5% of M. sodalis and 68.8% of Perimyotis subflavus. Our study is the first to use molecular genetic techniques to identify the winter diet of North American hibernating bats. The information from this study is integral to managing the landscape around bat hibernacula for insect prey, particularly in areas where hibernating bat populations are threatened by white-nose syndrome.

Highlights

  • The low ambient temperatures experienced by temperate insectivorous bats during winter pose two energetic challenges

  • At higher temperate latitudes, where daily temperatures during winter rarely rise above freezing and there is little opportunity to feed due to scarcity of prey [7, 12, 13], bats must survive on energy stored as fat and protein [2]

  • Augmenting energy stores may be critical for hibernating bats due to the ability to supplement energy stores lost during hibernation

Read more

Summary

Introduction

The low ambient temperatures experienced by temperate insectivorous bats during winter pose two energetic challenges Due to their small size and associated high surface area-to-volume ratio, cold winter conditions make bats susceptible to high levels of heat loss and energy expenditure [1,2,3]. At higher temperate latitudes, where daily temperatures during winter rarely rise above freezing and there is little opportunity to feed due to scarcity of prey [7, 12, 13], bats must survive on energy stored as fat and protein [2] Under these conditions, arousals occur but are relatively infrequent [14,15,16]. Periodic arousals and activity outside hibernacula during winter provide evidence for Bernard et al Front Zool (2021) 18:48 winter foraging both in North American and European bat species [7, 13, 18,19,20,21,22,23,24]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.