Abstract

We describe a sequential estimation approach designed to be used as part of a fisheries management procedure; it is computationally efficient and able to be applied to varying types, and extents, of data. The estimator maintains a pool of stock trajectories, each having a unique combination of model parameters (e.g., stock–recruitment steepness) sampled from prior probability distributions. Each year, for each trajectory, the values of variables (e.g., current biomass) are updated and tested against specified constraints. Constraints further determine the feasibility of the trajectories by defining likelihood functions for model variables, or combinations of variables, in particular years. Trajectories that fail to meet one or more of the constraints are discarded from the pool and replaced by new trajectories. Each year, stochastic forward projections of the trajectories in the pool are used to determine an optimal catch level. The flexibility and accuracy of the estimator is evaluated using the fishery for snapper, Pagrus auratus , off northern New Zealand as a case study. The sequential nature of the algorithm suggests alternative methods of presentation for understanding and explaining the fisheries estimation process. We provide recommendations for both the evaluation and operation of management procedures that employ the estimator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call