Abstract
Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush–Kuhn–Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a sequence of feasible points such that the sequence of function evaluations is decreasing. These methods can be regarded as extensions of the descent methods for unconstrained optimization problems. We pay particular attention to the Newton method. We show that under appropriate conditions, the Newton method is globally and quadratically convergent. Moreover, after finitely many iterations, the unit steplength will always be accepted. We also propose a nonlinear equations-based Newton method and establish its global and quadratic convergence. In the end, we do several numerical experiments to test the proposed Newton methods. The results show that both Newton methods are very efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.