Abstract

Facile synthesis of rationally designed nanostructured electrode materials with high reversible capacity is highly critical to meet ever-increasing demands for lithium-ion batteries. In this work, we employed defect engineering by incorporating metal organic framework (MOF) templates into one-dimensional nanostructures by simple electrospinning and subsequent calcination. The introduction of Co-based zeolite imidazole frameworks (ZIF-67) resulted in abundant oxygen vacancies, which induce not only more active sites for Li storage but also enhanced electrical conductivity. Moreover, abundant mesoporous sites are formed by the decomposition of ZIF-67, which are present both inside and outside the resultant SnO2-Co3O4 nanofibers (NFs). Attributed to the creation of vacancy sites along with the synergistic effects of SnO2 and Co3O4, SnO2-Co3O4 NFs exhibit an excellent reversible capacity for 300 cycles (1287 mA h g-1 at a current density of 500 mA g-1) along with superior rate capabilities and improved initial Coulombic efficiency compared with pristine SnO2 NFs. This is an early report on utilizing MOF structures as the defect formation platform into one-dimensional nanostructures, which is expected to result in superior electrochemical performances required for advanced electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.