Abstract

AbstractIntegration of photovoltaics (PV) into the built environment (BIPV) and infrastructure (IIPV) is required to increase the installed capacity of PV worldwide, while still leaving sufficient area for other land uses. Although BIPV applications have proven to play a significant role in the energy transition, road integrated IIPV concepts are less developed and bring challenges in mechanical and electrical stability and safety that still need to be addressed. In this work, the feasibility of integrating thin‐film CIGS (Copper Indium Gallium Selenide) modules into road tiles is investigated. PV road stacks were produced by gluing CIGS laminates onto concrete tiles and covering them with epoxy and glass granulates to form impact‐ and anti‐skid layers. IV (current–voltage) characteristics show that, respectively, a thin and thick epoxy layer results in 2% and 6.6% relative loss in power conversion efficiency. Although a thin protective layer would be beneficial to the power conversion efficiency of road modules, raveling tests show increased risk for electrical failure when a thin top layer is used. Pull‐off tests showed that the weakest adhesive strength (0.8 N/mm2) is between the thin‐film laminate and concrete, offering sufficient adhesive strength to at least withstand light traffic loading. Raveling and wheel tracking tests show no mass loss and only minor deformation of the stack, respectively, indicating no real risk of raveling or rutting. Thermal cycling and damp heat exposure of the PV road tiles show that yellowing of the top layers can significantly reduce performance over longer periods of outdoor operation. Damp heat exposure after mechanical loading shows no indication of moisture ingress on any of the tested configurations, suggesting the proposed CIGS laminate stack is able to withstand light traffic loading. From the measurement results, it can be concluded that thin‐film CIGS modules are mechanically and electrically suitable for road integration. Power conversion efficiencies over 12% can be attained with this technology, indicating its potential for renewable energy generation in road infrastructure. Performance stability can especially benefit from alternative top layer materials that maintain high transparency over long lifetimes. Additionally, pilot tests are required to demonstrate the potential of the technology in a controlled outdoor environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.