Abstract
Intelligent management of trees is essential for precise production management in orchards. Extracting components' information from individual fruit trees is critical for analyzing and understanding their general growth. This study proposes a method to classify persimmon tree components based on hyperspectral LiDAR data. We extracted nine spectral feature parameters from the colorful point cloud data and performed preliminary classification using random forest, support vector machine, and backpropagation neural network methods. However, the misclassification of edge points with spectral information reduced the accuracy of the classification. To address this, we introduced a reprogramming strategy by fusing spatial constraints with spectral information, which increased the overall classification accuracy by 6.55%. We completed a 3D reconstruction of classification results in spatial coordinates. The proposed method is sensitive to edge points and shows excellent performance for classifying persimmon tree components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.