Abstract
This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.