Abstract

This paper presents the feasibility study of the technical and economic performances of grid-connected photovoltaic (PV) system for selected rooftops in Universiti Tun Hussein Onn Malaysia (UTHM). The analysis of the electricity consumption and electricity bill data of UTHM campus show that the monthly electricity usage in UTHM campus is very high and expensive. The main purpose of this project is to reduce the annual electricity consumption and electricity bill of UTHM with Net Energy Metering (NEM) scheme. Therefore, the grid-connected PV system has been proposed at Dewan Sultan Ibrahim (DSI), Tunku Tun Aminah Library (TTAL), Fakulti Kejuruteraan Awam dan Alam Bina (FKAAS) and F2 buildings UTHM by using three types of PV modules which are mono-crystalline silicon (Mono-Si), poly-crystalline silicon (Poly-Si) and Thin-film. These three PV modules were modeled, simulated and calculated using Helioscope software with the capacity of 2,166.40kWp, 2,046.20kWp and 1,845kWp respectively for the total rooftop area of 190,302.9 ft². The economic analysis was conducted on the chosen three installed PV modules using RETScreen software. As a result, the Mono-Si showed the best PV module that can produce 2,332,327.40 kWh of PV energy, 4.4% of CO₂ reduction, 9.3 years of payback period considering 21 years of the contractual period and profit of RM4,932,274.58 for 11.7 years after payback period. Moreover, the proposed installation of 2,166.40kWp (Mono-SI PV module) can reduce the annual electricity bill and CO2 emission of 3.6% (RM421,561.93) and 4.4% (1,851.40 tCO₂) compared to the system without PV system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.