Abstract

Line edge roughness (LER) rapidly increases in the sub-10-nm-half-pitch region of resist processes used for the fabrication of semiconductor devices. Sub-10-nm fabrication with high throughput is a challenging task. In this study, the stochastic effects (LER and stochastic defect generation) of chemically amplified resist processes in the sub-10-nm-half-pitch node were investigated, assuming the use of extreme ultraviolet (EUV) lithography. The latent images were calculated by a Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. 7-nm-half-pitch fabrication by chemically amplified resist processes is considered to be feasible. However, significant improvement in the efficiencies of the conversion processes from optical images to resist images is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.