Abstract
Range verification in proton therapy is a critical quality assurance task. We studied the feasibility of online range verification based on proton-induced acoustic signals, using a bidirectional long-short-term-memory recurrent neural network and various signal processing techniques. Dose distribution of 1D pencil proton beams inside a CT image-based phantom was analytically calculated. The propagation of acoustic signal inside the phantom was modeled using the k-Wave toolbox. For signal processing, five methods were investigated: down-sampling (DS), DS + HT (Hilbert transform), Wavelet decomposition (Wavedec db1, db4 and db20). The performances were quantitatively evaluated in terms of mean absolute error, mean relative error (MRE) and the Bragg peak localization error (). In addition, the study analyzed the impact of noise levels, the number of sensors, as well as the location of sensors. For the noiseless case (32 sensors), the Wavedec db1 method demonstrates the best performance: is less than one pixel and the dose accuracy over the region adjacent to the Bragg peak (MRE50) is ∼3.04%. With the presence of noise, the Wavedec db1 method demonstrates the best noise immunity, achieving less than 1 mm and an MRE50 of ∼12%. The proposed machine learning framework may become a useful tool allowing for online range verification in proton therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.